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We study the problem of optimal recovery in the case of a nonsymmetric convex
class of functions. We compare adaptive and nonadaptive methods and prove a
bound on how much better adaptive methods can be. We use new inequalities
between Gelfand widths and Bernstein widths and new relations between these
widths and optimal error bounds for adaptive and nonadaptive methods,
respectively. 1") 1995 Academic Press. Inc.

1. INTRODUCTION

The adaption problem of the title is the following; Let X be a normed
space over R and let Fe X be a given subset. Assume that S; X -+ Y is a
continuous linear mapping into another normed space Y that is to be
approximated by a method of the form cp a N, where

We assume that the L k are arbitrary continuous linear functionals
L k ; X -+ R. We want to minimize the maximal error

L1 max (CP oN) =sup IIS(/) - cp oN(/)II.
jEF

In the adaptive case the choice of L k may depend on L 1(/), .•• , L k _ 1(f),
while in the nonadaptive case the L k are fixed, i.e., independent of f E F.
Each method is of the form S~d = cp a N with an arbitrary cp: Rn

-+ y. We
compare the numbers

• E-mail address:novak@mi.uni-erlangen.de.

123
0021-9045/95 $12.00

Copyright t· 1995 by Academic Press. Inc.
All rights of reproduction in any form reserved.



124

with the numbers

ERICH NOVAK

<d(S IF) = inf L1max(S~d),
S~d

where S" runs through all nonadaptive methods and S ~d runs through all
adaptive methods using an information N consisting of n linear functionals.
The adaption problem is the question of whether adaptive methods are
better than nonadaptive ones.

We refer the reader to [4] for references about this problem and only
mention the well known fact that adaptive methods are not better, up to
a factor 2, if the set F is convex and symmetric.

Problems of optimal recovery and n-widths (and also the adaption
problem) usually are studied under the assumption that the set F of
problem elements is convex and symmetric. In many cases, however, we
have a different type of a priori information, such as f?:- 0 or f is convex.
Therefore it is interesting to consider the case where F is only convex and
not symmetric, see Novak [4]. For some linear problems S: X --> G and
convex Fe X adaptive methods are much better than nonadaptive ones.

In this paper we further compare adaptive and nonadaptive methods and
prove a bound on how much adaptive methods can be better. We use new
inequalities between Gelfand widths and Bernstein widths, and relations
between these widths and optimal error bounds for adaptive and nonadap
tive methods, respectively. We also need a result of Sukharev [9] on the
optimal recovery of a linear functional on a convex set. Since this paper is
a sequel to the recent paper [4], we refer to that paper for further remarks,
examples, and references.

2. DIAMETERS OF MAPPINGS AND OPTIMAL RECOVERY

We always use the following assumptions and notation. Let X be a
normed space over R and let Fe X be convex. We assume that S: X -+ Y
is a continuous linear mapping into another normed space y.

We define several widths of S IF' The Kolmogorov width is given by

d,,(SIF)=inf sup inf IIS(f)-gll,
Yn feF ge Y"

(2.1 )

where Y" runs over all n-dimensional affine subspaces of Y. This means, by
definition, that Y" is the translation of a linear subspace U of dimension n,
hence Y,. is of the form Y" = }' + U with aYE Y. Every n-dimensional affine
subspace Y" of Y can be written in the form

{"I " }Y" =L (Xi YiL (Xi = I
1=0 1=0
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with suitable Y j E Y". In such a case we write

Y,,=aff{yo, YI' ... , Y,,}
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and say that Y" is generated by the Yj' The global Gelfand width is given
by

d;lob(S IF) = t· inf sup diam(S(F n (V" +fm, (2.2)
(ill lEX

while a local variant is given by

d~oc(S IF)=t·sup inf diam(S(Fn(U,,+ f))).
(E x Un

(2.3)

Here the infimum is taken over closed subspaces V" of X of codimension
at most n. We clearly have

(2.4)

with equality if F is also symmetric. It is useful in what follows to define
Bernstein widths. Here the definition is

h,,( S IF) = sup{ r I S( F) contains an (n + I )-dimensional ball of radius r}.

(2.5)

Of course these diameters also can be defined for sets by

.I',,(F) = .I',JS IF)'

where .1'" is one of the widths considered here and S = Id: X -> X.
There are examples in Novak [4] where the local widths are much

smaller than the global widths. In that paper we asked whether there is a
bound on how much smaller they can be. In other words, is there an
inequality of the form

(2.6)

with a sequence ('" that is independent of F? If this is the case then of
course it would be interesting to know the best constants ('II' Here we prove
an inequality of the type (2.6) and apply it to the adaption problem.

First we note a connection between the error bounds e~on and <<I and
certain n-widths of S IF' Most of these simple relations are already
mentioned in Novak [4].
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PROPOSITION 1. Let Fe X be a convex set and let S: X --> Y be linear and
continuous. Then

(2.7)

and

(2.8)

3. AN INEQUALITY BETWEEN DIFFERENT WIDTHS

In this section we prove an inequality between Kolmogorov and
Bernstein widths. For the symmetric case, a slightly better estimate can be
found in Bauhardt [1], Mityagin and Henkin [3] and in Pinkus [7].

We also should say that better estimates are known in the case where Y
is a Hilbert space, see Perelman [5].

LEMMA 1. Assume that Yo, ..., Yn + 1 E S(F) and denote by Ek the affine
subspace generated by the Yi without Yk>

Let d(Yk> Ed=infzEEk IIYk-zll. Then

b (s I )>- mink d(Yk> Ek)
n F ~ n+2 .

Proof Consider the midpoint m of the Yi'

I ,,+ I

m=-+2 L Yi'
n i~O

and assume that Li,.k (Xi = 1. We obtain

(n+2)·llm- L OCiyi[il=I!Yk+L Yi-(n+2)L OCiyill
,,.k I ,,.k ,,.k

for some Pi with Lin Pi = I and therefore d(m, Ek)~ 1/(n + 2) d(Yk, Ed·
We prove that S(F) contains the (n + 1)-dimensional ball in

y"+I=aff{Yo,Yl,···,Yn+d
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with center m and radius
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mink d(Yb Ek )
r=

n+2

Let x = m + L:7~~ fJ: i Yi with L:7~~ OC i = 0 and IlL: OC i Yill ~ r. Assume that the
smallest OC i is less than -lj(n + 2). Then we could conclude that

IIYi- k~; Pd'k II ~ I;il < r(n + 2) ~ d(Yi' Ei)

for some Pk which sum up to 1. This can not be the case and we obtain
OCi~ -lj(n+2). This implies that x=L7~~ A;Y;, where the A;~O and sum
to 1. Thus x E S(F), since S(F) is convex. I

For n E N and Yo, ,.. , Yn+ IE S(F) we define

v,,+I(YO, YI, ... , Yn+d=sup{det[lj(Yi- YO)]7.;~I IljE Y*, Illjll = 1},

In the next lemma we collect some properties of these numbers,

LEMMA 2. (l) v" + I (Yo, ... , Yn + I) > 0 iff the Yi generate an (n + 1)
dimensional affine space.

(2) v" + I is independent of the ordering of the }';.

(3) v,,+I(YO-Y' YI-Y""'Yn+I-y)=v,,+l(YO' YI, ..·,Yn+d, i.e.,
this quantity is translation invariant and we may assume that Yo = O.

(4)

(3.1 )

Proof The proof of the properties (l), (2) and (3) is trivial and there
fore it is enough to prove (3.1) for Yo = O. Assume that y* E En+ 1 is a best
approximation of Yn + 1 in En + I' i.e.,

IIYn+] - Y*II =d(Yn+I' En+I )·

From the elementary properties of the determinant we obtain that
Idet[ I)Yi)]7.;~ II does not change if Yn + I is replaced by Yn + 1- y*. Because
\lj(Yn+ 1- Y*)I ~ IIYn+ 1- y* II we obtain by expansion of the last row

Idet[lj(Yi)] 7.;~ II ~ (n + l) IIYn+ I - y* II I v,,(Yo, ..., Yn)1

which proves the left inequality of (3.1).
To prove the right inequality of (3.1) for the case Yo=O assume that

II' ... , InE y* with Illkll = 1 for all k. There is an In+1 E y* with Il/n + 1 11 = I
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and 1"+'(Y"+I)=d(y"+,, E,,+,) and 1"+'(Yk)=O for k=O, ... , n, since
E" + I is a linear subspace because of Yo = O. Hence we obtain

and the right inequality of (3.1) follows. I

LEMMA 3. Given n E Nand 0 < I; < I. there are Yo, ...• y" + I E S(F) such
that

1 ,
min d(Yk, Ed ~-~I d,,(S IF)(l -e)-.

k~O• ...• ,,+ 1 n +
(3.2)

Proof We assume that S( F) contains (11 + 2) points that generate an
(n + I )-dimensional affine space since otherwise the statement of the lemma
is trivial. We put

and choose elements Yo' .... y" +' E S( F) such that

To prove (3.2) we assume the contrary and, without loss of generality,

By definition of the Kolmogorov widths there is a y* E S(F) with
d( y*. E" + ,) ~ d,,( S IF)(l - e). We obtain the estimate

v,,+ dYo, ... , Y,P y*) ~ d(y*, E" + 1)' V,,(yo, ..., y,,)

~ d" (S Ir.') v,,( yo • ... , Y 11)( I - f; )

that contradicts v,,+,()"o, ... , Y,,, y*)~ v,,+!. I

The following result follows easily from Lemma 1 and Lemma 3.

THEOREM I.

(3.3 )
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4. BOUNDS FOR THE ADAPTION PROBLEM
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Theorem I is about Kolmogorov widths. For applications to the
adaption problem we have to replace these diameters by the global Gelfand
widths. This can be done using analogous lemmas that reflect the dual
situation.

Assume that I" ... ,11/+1 E Y* with 1!/ill = I for all i and denote by L k the
linear subspace generated by the l; without Ik ,

I t is useful to define

L1(lk' L k) = inf inf sup I/dY) -/(y) - IXI.
I E I.}.: :r E R \' E S( 1-1

The number L1(lk' Ld indicates how well Ik can be recovered by the other
Ii' This follows from a result of Sukharev [9] saying that optimal recovery
ofa functional/k using 11"'" Ik_l, Ik+I'"'' 11/+1 on a convex set Fcan be
achieved by an affine method, hence the optimal error bound is J(lk' Ld.

We mention, though it is not really important for the following, that the
infimum in the definition of J(lb Ld is always attained. The proof consists
in three steps and we do not present the details:

Step 1. We can and will assume that 11,'''' Ik_l, Ik+I,'''' 11/+1 are
independent on the set S( F).

Step 2. Large values of liXl or of the coefficients IIXil in 1= Li,okIX,li

lead to a large error in sup\, E SI FI Ilk ( y) - I( y) -iX I. Hence it suffices to con
sider a bounded set of coefficients (IX, IX" ... , IXk _ " IXk + I , ""XII + , ) E RI/ + 1.

Step 3. The mapping

h: (x, IX" ... , IX k_" IX k+" ..., iX" + I) 1-+ sup I/dY) -/(y) - IXI E R(~ u { + ce}
YES(F)

could be discontinuous if S( F) is unbounded. Even in this case, however,
the set where h is finite is an affine subspace of R" + I and h is continuous
on that set. Hence the existence of an optimal pair (/*, iX*) follows from
compactness.

LEMMA 4. Assume that II, ... , 11/+ IE y* a'ith IIli li = 1 for all i. Then

mink J(/b Ld
b,,(SIF)~ I'n+

Proof Consider S: X -+ Y= RI/ +, defined by

S(j)=(ldS(j))' ... , 11/+ I (S(j))),
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where Y is equipped with the maximum norm Ilyll w' Then we obtain

IIS(h) - SCh) II ex: ~ IIS(h) - SCh) II y

and hence b,,(S IF) ~ b,,(S IF)' Let k E {l, ..., n + l} and c = min; L1(1;, L;)
and assume that 0 < e < c. Then there is a Yk E S(F) such that the whole
interval

is contained in S(F). By ek E R" + I we mean the vector with coordinates t5;b
i = I, ... , n + 1. This follows from the result of Sukharev [9] mentioned
above. We claim that S(F) contains the (n + I )-dimensional ball with
radius

and midpoint

Let

with It5kl ~ r. Then h + (n + I) t5kek E I k c S(F) and y is a convex combina
tion of these elements ofS(F). We conclude that b,,(SIF)~b,,(SIF)~

mink LJ(lb Ld/(n + I). I

For n E N and I), ..., I" + \ E y* we define

We collect some properties of these numbers.

LEMMA 5. (I) J-v" + 1(11 " ... , IfI+ I) > 0 for some set of I; iff S(F)
contains Yo, ..., y" + 1 that generate a (n + I )-dimensional affine space.

(2) J-v" +) is independent of the order of the I;.

(3)

J-v" + \ (II> ... , I" + Jl ~ (2n + 2) . L1(1f1+ (, L" + Jl. J-v,,(I\, ..., I,,)

~(2n+2)· J-v,,+I(lI"'" 1"+1)' (4.1 )
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Proof The proof of (1) and (2) is trivial. To prove (4.1) assume that
the pair 1* E L" + I and a.* E R yield a best approximation of I" + I in L" + I'

i.e.,

A(ln+I, L,,+d= sup 11"+I(y)-I*(y)-a.*I.
yES(F)

The existence of an optimal pair (1*, a. *) is not really needed in the
following because we also could work with a pair (1*, a. *) which is
"almost" optimal.

We prove the left inequality of (4.1). First we can replace I" + I in
/det[lj(Y; - Yo)J7.;~ I' by 1,,+I-1* without changing the determinant. Now
we add and subtract a.* to the elements of the last column. We obtain,
expanding by the last column of the matrix, the desired result. The factor
two comes in because of the Yj - Yo leading to two sums.

To prove the right inequality we first remark that J.¥,,(ll, ... , I,,) does not
change if a Ik is replaced by Ik + I with I E lin {II' ..., Ik _ d. Hence we find
for a given [; with 0<[;< 1 elements Yo, ..., Y" such that

and we may assume that Ij(y; - Yo) = 0 for i < j. In particular, we replace
/"+1 by /"+1=1"+1-/ with IEL"+1 such that !,,+,(Yj-Yo)=O for
i= 1, ... , n. So we obtain the desired estimate by

~J.v,,(lI,···,//l).(l-[;) inf sup !(I,,+l-/)(Y,,+I-Yo)!
IE L,. + 1 J'n + 1 E S( F)

because of

inf sup 1(I"+I-/)(Y"+I-Yo)I~A(I"+I,L,,+d· I
IE L n + 1 }'n + I EO S( F)

The analog to Lemma 3 is the following.

LEMMA 6. Given n E Nand 0 < [; < 1, there are II, ..., I" + IE y* with
Il/kll = 1for all k such that

(4.2)

Proof We assume that there are II, ... ,1"+1 E y* such that
J.¥" + I (II, ... , I" + I) > 0 since otherwise the statement of the lemma is trivial.
We put

640/82/1-10
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and choose It, ... , I" + 1 E Y* with Il/k II = I for all k such that

To prove (4.2) it is enough to show L1(1,,+ t, LIl+ t) ?: (2n + 2) -1 d;tob(S IF)
(I - e)2. We assume the contrary, i.e.,

We define

U" = {IE X 1l;(S(f)) =0, i= I, ..., n}.

Then U" c X is a closed subspace with codimension at most n and there
fore, by definition of the Gelfand numbers,

d;tob(S IF):S;! sup diam(S(Fn (U" + f)))·
fEX

The right side of the last display can also be written as

! sup diam{S(g) I gEF, 1,(S(g))=y;, i= I, ... , n}.
ye R"

Hence we find ayE R" and gl, g2 EF such that li(S(g d) = 1;(S(g2)) for all
i and

(I - e)· d;lob(S IF):S;! IIS(gl) - S(g2)11·

By Hahn-Banach there is a 1* E y* with 11/*11 = I such that 1/*(S(gd)
1*(S(g2))1 = IIS(gd - S(g2)11. Because of l;(S(gd) = 1;(S(g2)) for i= I, ... , n
we obtain

Putting these formulas together we obtain

Using the assumption (4.3) and (4.1) we conclude that

J¥,.+](lt,· .. , I", 1*)?:L1(l*, Lll+d· J¥,.(l], ... , Ill)

?: d;tob(S IF) J¥,.(lt, ... , 1,,)( I - e)

>(2n+2)(l-e)-1 L1(1Il+I, IIl+d W(ll,'''' Ill)

?: (l - e) - I W(I t , .•• , I" + t ) ?: Tv" + 1

that contradicts W;,+ t(l1, ..., I", I*):S; W;,+ t, i.e., the formula (4.3) must be
wrong. I
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d;lob(S IF) ~ 2(n + 1)2 b,,(S IF)'

This result foIlows easily from Lemma 4 and Lemma 6. By Proposition 1
and Theorem 2 we immediately obtain a bound on how much adaptive
methods can be better than nonadaptive ones.

THEOREM 3.

Remarks. (a) We conjecture that the bounds are not optimal and that
e~on(SIF)=O(n·e~d(SIF))is true in general. Related conjectures (about
Bernstein diameters and Kolmogorov diameters in the symmetric case) are
due to Mityagin and Henkin [3] and also can be found in [1], [6] and
[7]. These conjectures are stiIl unproved.

(b) Examples where adaptive methods are much better than non
adaptive ones are described in Novak [4]. Similar examples (with function
values instead of arbitrary functionals) can also be found in Korneichuk
[ 2] and Sonnevend [8].

5. OPEN PROBLEMS

We mention three open problems connected with the results of this
paper:

I. Improve the bounds of Theorem I, Theorem 2, and Theorem 3.

2. Study the adaption problem in the case where only a restricted set
of linear functionals L; E X* (such as function evaluations) is aIlowed.

3. Study the adaption problem for special operators S: F~ Y, where,
for example, S is the solution operator of an integral equation of the first
or second kind.
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